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ABSTRACT

Type 2 diabetes is a growing concern for large segments 
of the world, and its incidence is rising rapidly, especially in 
developing nations. Clinical management of type 2 diabetes 
focuses on managing blood glucose through the provision 
of oral hypoglycemic drugs, insulin, and more recently GLP-1 
agonists and SGLT-2 inhibitors. The expectation is that this is 
a progressive disease and that patients will remain on these 
medications lifelong. Given the significant impact on quality of 
life that diabetes has, it is important to find ways to manage 
the symptoms and improve insulin sensitivity. Diabetes, along 
with cardiovascular disease, cancer, and respiratory diseases 
account for most non-communicable disease deaths globally. 
Low-cost and non-invasive treatment of diabetes through diet 
and supplementation can have significant impacts on global 
health.

Introduction

Type 2 diabetes mellitus (T2DM) currently affects millions 
of people globally and is increasing globally, particularly in 
developing countries.1 Diabetes is creating a massive disease 
burden and contributing to a lowered quality of life.2 The 
pathogenesis of diabetes is multifactorial, encompassing 
genetic and environmental factors, some of which are 
modifiable.3 Recently, novel treatment approaches demonstrate 
promise for the long-term remission of T2DM symptoms.4 

Diabetes management requires continual use of diabetic 
medications, with the expectation that this will last life-long. 
Purchasing the medications, especially the newer call for GLP1- 
agonists, causes significant economic strain on individuals, 
insurance companies, and national health services.5  

In the U.S., one in every seven health care dollars spent is 
directly attributable to diabetes, and people with diabetes 
incur almost one quarter of all medical costs.5 People with 
diabetes spend $9,601 more per year on medical care than 
their counterparts without diabetes, and incur $3,640 per year 
in indirect costs, according to a 2017 survey.5 Adults below the 
poverty line experience diabetes at higher rates than their more 
affluent counterparts, and rates of T2DM for adults who do not 
finish high school (13.4%) are nearly double the rates of those 
with more than a high school education (7.1%).6 Diabetes rates 
in different racial populations vary greatly; adults of American 
Indian origin have the highest rates of diagnosed diabetes at 
14.5%, followed by blacks at 12.1%, Hispanics at 11.8%, Asians 
at 9.5%, and non-Hispanic whites at 7.4%.6 

Globally, diabetes affects 6.28% of the world’s population 
(as of 2017), and one million deaths per year can be attributed 
to diabetes, making it the ninth leading cause of mortality.7 As 
nations develop economically, the disease burden of diabetes 

is increasing fastest in the developing nations of Sub-Saharan 
Africa, followed by North Africa and the Middle East.1 Eastern 
Europe saw the slowest rise in T2DM of any geographic 
region studied.1 Some regions are suffering very high disease 
prevalence, especially the Pacific Ocean island nations, where 
prevalence is 20.3% in Fiji, for example.7  

T2DM is a challenging issue in developing countries, due to 
the high relative cost and low accessibility of treatment.8, p2 These 
challenges motivate the search for low-cost and accessible 
approaches for treatment and prevention of diabetes. 

Treatment of diabetes has typically focused on supplying 
medications over the course of the patient’s life,9 and accepting 
the permanence of the condition. Early work showed diabetes as 
a chronic progressive condition, marked by a steady rise in blood 
glucose10 and degraded pancreatic beta cell function.11 In T2DM, 
blood sugar increase with disease progression is due to insulin 
resistance in peripheral tissues, increased glucose production 
in the liver, and impaired insulin secretion.12 In addition to 
these three abnormalities, known as the “triumvirate,” five 
additional pathogenic processes have been added, including 
accelerated lipolysis in fat cells, incretin hormone deficiency 
and resistance, overproduction of glucagon, increased renal 
tubular reabsorption, and long-term potentiation of the central 
nervous system in metabolic regulation.12 Given the potential 
complexity of T2DM, the wide variation in individual treatment 
response must be considered.13 Recent work has demonstrated 
that long-term remission of T2DM symptoms is possible in a 
subset of T2DM patients with weight loss,4 and the degree of 
weight loss is associated with diabetes remission.13 

In a subset of T2DM patients undergoing significant weight 
loss, resumption of ad libitum eating habits did not result in 
diabetes symptoms returning.13 These findings illustrate the 
effective treatment of T2DM in a subset of patients, which may 
guide preventive efforts in the wider population. Treatment 
based on biological mechanisms could drastically reduce 
disease burden and medical expenditures on diabetes globally. 

Epidemiology

Several factors account for the increased incidence of 
diabetes. These factors include the increasing consumption of 
processed food with high glycemic index,14 more sedentary and 
indoor lifestyles,15 the use of artificial additives, and exposure to 
pesticides. 

Other causes attributable to globalization and modernization 
may be changed consumption habits associated with increased 
affluence, and mismatches between one’s ancestral diet and one’s 
daily diet due to migration or food availability. 

A recent survey illustrated the increase in global diabetes 
between 1990 and projections for 2025. Diabetes prevalence 
globally has increased from roughly 211 million in 1990 to 476 
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million in 2017, and is projected to rise to 701million by 2025.2 

Changes in Food Consumption Patterns
With increasing affluence and migration to cities, people 

are more likely to consume processed convenience foods. With 
convenience foods, people are more likely to eat throughout 
the day, and processed food provides less sensation of satiety 
than its natural counterparts, so people can end up consuming 
more. Additionally, processed food is high in sugar and has a 
high glycemic index, as blood glucose blunting influences 
including fiber and protein are separated or removed. 

Those purchasing their food from grocery stores are also 
receiving a less nutritious product than their counterparts 
even a few decades ago due to mineral depletion of soils and 
growing technologies, which prioritize bulk mass at the expense 
of overall health. Artificial sweeteners and other additives can 
have adverse impacts.

Sedentary, Indoor Lifestyle and Stress
As economic development occurs, people have less need to 

use their own bodies to perform work. The number of people 
performing the majority of their work on a computer has risen 
dramatically,16 and so have rates of overweight and obesity.17 
Migration to cities and economic affluence are associated with 
higher rates of sedentary behavior.18,19 

In the “Blue Zones,” a term coined by Dan Buettner to describe 
geographical pockets of people with long health spans, people 
are active for their entire lifetimes, and low-level physical 
activity, such as walking or gardening, occurs throughout the 
day.20 People exposed to natural settings experience lower 
levels of stress biomarkers than their counterparts in urban 
environments.21,22 Stress is associated with an impaired glucose 
response23 as well as cravings for high glycemic index foods.24,25 
There are many causes for stress, and loneliness is a major 
predictor of all-cause mortality and is associated with metabolic 
health disorders.26 

Much of modern life takes place indoors,27 creating fewer 
opportunities for sun exposure. Sun exposure is inversely 
correlated with all-cause mortality,28,29 and also has positive 
impacts on metabolism.30 

Toxic Exposures
Compromise of a regulatory authority31 has allowed 

exposure of humans to an increased number of chemicals. 
Of the chemicals in the U.S. EPA ToxCast screening program, 
only approximately one-third do not have any toxicity data 
available, according to a 2009 study.32 Only one-quarter of 
chemicals in the ToxCast screening program had an entry in a 
highly curated database, according to that same study.32 Before 
its 2016 amendment, the U.S. EPA’s Toxic Substances Control 
Act regulated fewer than 10 chemicals out of a total registered 
database of more than 86,000 chemicals.33 Several classes of 
environmental toxins may play a role in the pathogenesis of 
diabetes.34–36 

Biological Mechanisms: Glucose and Insulin Regulation

Glucose, the body’s primary source of energy, requires 
insulin, a hormone produced by beta cells in the pancreas,37 

to enter cells for utilization. A common analogy of insulin 
is as a key to open the cell’s glucose transporter, allowing 
glucose to enter and power cell functions.38 This mechanism is 
essential to maintain proper glucose levels in the bloodstream, 
and dysregulation of this mechanism leads to hyper- or 
hypoglycemia.39 

Insulin resistance is the cornerstone of T2DM, a condition 
in which peripheral tissues, such as muscle and fat cells, fail 
to respond effectively to insulin’s signal.40 Imagine cells as 
homes with glucose as a guest and insulin as the doorbell.41 In 
diabetes, the cells’ metaphorical “occupants” are unresponsive, 
leading to elevated glucose levels in the blood.42 High levels of 
free fatty acids in blood may induce insulin resistance. These 
fatty acids, often found in excess in obesity, disrupt the internal 
mechanisms that respond to insulin, preventing the glucose 
doors from opening.43,44 As a result, glucose accumulates in the 
bloodstream, leading to hyperglycemia and tissue damage.45 

Beta cells in the pancreas play a critical role in producing 
insulin.37 In early stages of T2DM, these cells work overtime to 
compensate for insulin resistance. However, this overworking 
comes at a cost. If glucose levels remain elevated due to 
resistance, beta cells release more insulin, contributing to the 
glucose influx into cells.46 

The continual strain causes these cells to produce excess 
insulin and create additional substances, including amyloid 
polypeptides.47 The accumulation of these substances,47 
combined with the inflammatory response triggered by 
hyperfunction,48 contributes to beta cell destruction.

The inflammatory response within the pancreas adds 
another layer to the complexity of diabetes.49,50 Macrophages 
and other immune cells are drawn to the site, leading to a 
micro-inflammatory environment.48 These activated immune 
cells target and destroy beta cells, further exacerbating the 
condition.51,52 

Adipocytes, or fat cells, also have a role to play. In obesity, 
adipocytes release excessive free fatty acids, which can 
stimulate the production of inflammatory cytokines,53 which 
compounds the inflammatory response, fueling the cycle of 
insulin resistance and beta cell destruction.48,54 

While these obesity-related processes are critically 
important, the majority of diabetes patients did not reverse 
their condition after significant weight loss in the DiRECT 
trial,13 because of the additional pathogenic processes named 
above.12 

Treatment

Diagnostic parameters
Chronically elevated blood glucose is often a sign of insulin 

resistance (or potentially absolute insulin deficiency, as in the 
case of type 1 diabetes mellitus), as glucose is inhibited from 
entering the cell when insulin signaling is not functioning 
properly.55 Using the American Diabetes Association diagnostic 
standards, a fasting plasma glucose (FPG) of 126 mg/dL 
(7.0mmol/L) or greater is considered diagnostic of diabetes.56 

Another common test is the hemoglobin A1c test (A1c), 
which is a proxy measurement for average blood sugar level 
over the previous 2-3 months.57 A normal range is between 4% 
and 5.6%; 5.7% to 6.4% is indicative of prediabetes; and 6.5% 
and above is diagnostic of diabetes.56 
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Elevated triglycerides (TGs) (>250mg/dL or 2.82mmol/L) 
can be symptomatic of diabetes.56 Low high-density lipoprotein 
(HDL) cholesterol (<35mg/dL or 0.90mmol/L) is also diagnostic 
of diabetes and pre-diabetes.56 Importantly for people 
with diabetes, who are at increased risk of coronary artery 
disease (CAD),58 a predictor of CAD is the TG/HDL ratio.59 Total 
cholesterol is not predictive of CAD.59 A ratio of less than 2:1 
triglycerides to HDL cholesterol is ideal.60 

In addition to these possible clarifying tests, suggestive 
clinical factors include abdominal obesity and hypertension.61 

Diet and Lifestyle Changes 

Using therapeutic fasting, many people have achieved 
a long-term normalization of their blood sugar and insulin 
sensitivity parameters without the need for medication.80 While 
hypoglycemic events can increase with fasting,81 fasting can 
be practiced safely by people with diabetes using appropriate 
glucose monitoring.82 However, further research is necessary 
to elucidate the mechanisms involved in therapeutic fasting in 
diabetes.

Meals should preferentially be composed of foods with 
a lower glycemic index (GI), which do not raise blood sugar 
rapidly83 and can lower fasting blood glucose over the long 
term.84 Glycemic index (GI) is a useful metric, which ranks foods 
from 0 to 100 based on the relative rise in blood glucose level 
two hours after eating a constant carbohydrate amount (50g) 
of the measured food.85 GI varies between individuals, owing to 
changes in metabolism.86 The recommendation of the American 
Diabetes Association low glycemic index diets87 is equivocal. 

Increased consumption of ultra-processed foods (UPFs) 
is associated with a greater risk of diabetes88–90 and obesity,91 
possibly owing to their higher GI and lower satiety potential.92 
UPFs also contain lower levels of crucial nutrients and fibers93,94 
and higher levels of sugar,95–97 trans fats,98 and additives,99 which 
contribute to their higher GI relative to less processed food.92 

Much of the variation in the GI of foods can be attributed to 
the differential fiber content of the food.100 Unprocessed fruits 
and vegetables have low GI despite high carbohydrate levels 
relative to other macronutrients,101 possibly owing to their fiber 
content.102 Processing can separate the carbohydrates from the 
fiber matrix and increase the GI.103 While fruit fiber consumption 
is weakly protective against diabetes,104 total fiber consumption 
shows a lowering of diabetes risk in a dose-responsive manner.105 
Trials on consumption of fruit juices show a neutral106,107 or 
positive correlation108 between fruit juice consumption and 
T2DM risk, so unprocessed fruit is a better option. 

Despite their lack of calories, artificial sweeteners can 
increase the risk of diabetes and pose other risks, possibly 
including cancer.109,110 They are proposed to pathogenically 
alter glucose tolerance through changes in gut microbial 
composition.111–113 However, the herb Stevia rebaudiana, in 
addition to its use as a sweetener, lowers fasting and post-
prandial blood glucose levels in diabetics.114 Stevia may be an 
effective natural sweetener for diabetics to use.

A high omega 6:3 ratio, characteristic of modern diets, 
promotes inflammation.115 A more balanced ratio of omega-6 
to omega-3 (ideally ~1), can reduce inflammation115 and 
its contribution to diabetes development.116 Meta-analyses 
have shown an improvement in triglycerides,117 fasting 
blood glucose,118 and insulin resistance.118 However, other 
meta-analyses of randomized controlled trials (RCTs) did not 
demonstrate a positive impact of omega-3s on diabetes.119,120 
Still, dietary changes should prioritize omega-3 consumption 
over omega-6.

Additionally, even small amounts of trans fatty acids (TFAs) 
are associated with increased risk of insulin resistance,121 and 
should be avoided. TFAs are often found in hydrogenated oils, 
which are characteristic of UPFs.122 

Physical activity can be an important intervention in 
reducing the insulin resistance of people with diabetes.66,123 

Figure 1. An Infographic Guide to Interventions Associated 
with Improvements in T2DM symptoms.  
1) Time restricted eating;62 2) low glycemic index foods,63 
with emphasis on greens and cruciferous vegetables,64 while 
avoiding processed foods;6 3) exercise,15 while avoiding 
excessive endurance exercise, which can increase cortisol,66 
stress reduction,67 and sun exposure;68 4) supplements and 
medications: a) berberine,69 b) metformin,70 c) magnesium,71 
d) melatonin,72 e) resveratrol,73 f ) cinnamon,74 g) omega-3,75 h) 
probiotics.76 

Intermittent fasting (IF) can be an effective tool for weight 
loss and induction of autophagy. As weight loss is associated 
with a reduction of diabetes in some patients,13 IF may be an 
important tool for diabetes management, as it to contributes 
to weight loss,77 and obese people with diabetes reported 
spontaneously eating fewer calories.78 Another benefit of IF 
for diabetics is alleviation of cognitive impairment, possibly 
because of changes in gut microbiota.79
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Medications and Supplements
Several medications and nutritional supplements acting 

through distinct biological mechanisms are spotlighted here 
as potentially helpful in diabetes. The American Diabetes 
Association does not actively recommend any dietary 
supplements for the treatment of diabetes,87,124 and therefore 
any dietary supplements are not considered standard of care. 
Clinical trials are needed to verify benefits and risks. 

Berberine is a natural compound known to both traditional 
Chinese medicine and Ayurvedic medical systems. It is found 
in many distinct plants and has a history of two millennia of 
medical use.125 In the context of diabetes, it lowers blood sugar 
and can reduce insulin resistance.126,127 It is hypothesized to work 
through mitochondrial inhibition, stimulation of glycolysis, and 
activation of the AMPK pathway.127 

Metformin, one of the best-established anti-diabetic drugs, 
has actions similar to berberine, lowering blood glucose levels 
and restoring insulin sensitivity.128 

Supplemental magnesium can affect a wide variety of 
biological pathways, and deficiency is widespread.129 In RCTs, 
oral magnesium reduces insulin resistance,130 through several 
mechanisms, which have been covered in a recent review.71 

Melatonin, widely known for its role in sleep regulation, 
has been shown to improve glucose sensitivity in β-cells in 
an in vitro study.131 Markers associated with insulin resistance 
increase in cells treated with palmitic acid (common saturated 
fat), but melatonin inhibits the increased expression of 
these genes associated with insulin resistance and T2DM.132 
Additionally, people who secrete more melatonin during 
nighttime are less likely to develop insulin resistance.133 These 
mechanisms are supported by a recent meta-analysis of trials of 
melatonin on insulin resistance, demonstrating a reduction in 
diabetes parameters when compared to placebo.134 

Resveratrol is useful as a fasting mimetic and can stimulate 
autophagy.135 In the context of insulin resistance, resveratrol 
also exhibits autophagy-independent effects.136 A meta-
analysis of eleven studies on the impact of resveratrol on insulin 
resistance demonstrated a significant improvement in insulin 
sensitivity.73 

Cinnamon, in addition to being a common household 
spice, has also been an herb used in traditional Chinese 
medicine for at least four millennia.137 A meta-analysis revealed 
a significant decrease in fasting blood glucose levels,74 marking 
it as an attractive herb for stabilizing blood sugar levels against 
rapid fluctuations. Additionally, a meta-analysis of sixteen 
RCTs demonstrated a significant decrease in the homeostatic 
model assessment for insulin resistance,138 a metric for insulin 
resistance.139 

Omega-3 fatty acids are important for their cardioprotective 
effects,140,141 and they also have been observed in a meta-
analysis of thirty studies to reduce insulin resistance.118 
Since cardiovascular disease is comorbid with diabetes,58 
cardioprotective supplements should be considered.

Probiotics can have positive impacts on gut microbial 
diversity and subsequently have positive impacts on 
inflammation, inflammatory stress, insulin sensitivity, and 
reduction in autoimmunity.76,142 

Novel pharmaceutical agents

GLP-1 agonists
Glucagon-like peptide-1 (GLP-1) receptor agonists 

increase glucose-dependent insulin secretion, decrease 
inappropriate glucagon secretion, delay gastric emptying, 
and increase satiety.143,144 There are currently six approved 
GLP-1 receptor agonists: exenatide, lixisenatide, liraglutide, 
exenatide, dulaglutide and semaglutide. They are administered 
subcutaneously (SC) at various dosing frequencies, except 
semaglutide, which is available as a SC and oral formulation. 
GLP-1 receptor agonists are attractive options for the treatment 
of T2DM as they effectively lower A1C and weight, while having 
documented cardiovascular and renal benefits.143,144 

A meta-analysis of seven trials, with a combined total of 
56,004 participants, demonstrated that treatment with a GLP-1 
receptor agonist reduced major cardiovascular events (MACE) 
by 12% (HR 0.88, 95% CI 0.82-0.94; p<0.0001).145 In this study, 
the hazard ratios were 0.88 (95% CI 0.81-0.96; p=0.003) for 
death from cardiovascular causes, 0.84 (0.76-0.93; p<0.0001) for 
fatal or non-fatal stroke, and 0.91 (0.84-1.00; p=0.043) for fatal 
or non-fatal myocardial infarction. Furthermore GLP-1 receptor 
agonist treatment reduced all-cause mortality by 12% (0.88, 
0.83-0.95; p=0.001), and also improved composite measures of 
renal outcome. 

The most common adverse effects with the GLP-1 receptor 
agonists are gastrointestinal related (nausea, vomiting, and 
diarrhea) and injection site reactions.143 GLP-1 receptor agonists 
and SGLT-2 inhibitors are strongly recommended by many 
cardiology and endocrinology societies as first-line therapies 
ahead of metformin. They also recommend the addition of a 
GLP-1 agonist in patients who have established atherosclerotic 
cardiovascular disease,146 heart failure,146 or indicators of 
established kidney disease.147 

The major limitation with the use of GLP-1 agonists is the 
cost of the drug. In the U.S., a month’s supply costs between 
$936 and $1,349, although the list price of these drugs is 
significantly lower in other nations.148 For cost-effectiveness to 
be achieved, the costs of GLP-1 agonists would have to fall by 
at least 90%.149 

SGLT-2 inhibitors
The SGLT-2 inhibitors comprise a novel class of therapeutics 

in the treatment of T2DM. It includes canagliflozin, dapagliflozin, 
ertugliflozin, and empagliflozin.150 The SGLT-2 inhibitors prevent 
the reabsorption of filtered glucose from the tubular lumen, 
which lowers blood glucose, as more glucose is excreted in the 
urine.151,152 In addition to their anti-hyperglycemic effects, they 
also reduce the risk of major adverse cardiovascular events in 
patients with T2DM,153 and in patients with pre-existing heart 
failure.154–156 In addition to cardioprotective effects, they also 
provide renal protective effects, preventing the decline in 
glomerular filtration rate (GFR).157 They are attractive drugs for 
T2DM patients, who are at increased risk of both cardiovascular 
disease158 and renal failure159 relative to a population without 
T2DM.

Adverse effects associated with SGLT-2 inhibitors 
include genital infections, as they increase urine glucose 
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concentration.160,161 Dapagliflozin taken at 10 mg daily increased 
the risk of urinary tract infection compared to placebo (RR 1.33, 
1.10–1.61), though this was the only drug-dose combination in 
the meta-analysis showing a significant result.161 

Despite the benefits of SGLT-2 inhibitors and their 
acceptable safety profile, cost issues are paramount, and the 
cost of SGLT-2 would need to decrease by 70% to be considered 
cost effective.149 The high costs of the GLP-1 agonists and 
SGLT-2 inhibitors motivate the investigation of lower-cost 
interventions.

Outlook: Lifting of Disease Burden

Provided that patients are willing to make lifestyle changes, 
especially in their food consumption patterns, it appears that 
T2DM is a treatable disorder, as genetic factors only account for 
18% of the variability in T2DM risk.162 Even in those with increased 
genetic susceptibility, significant improvement is possible. 

As noted above, the cost of diabetes is a significant 
fraction of U.S. medical costs. Given that U.S. medical spending 
constitutes 17.7% of GDP, amounting to $11,172 per person 
in 2018,163 the direct costs of diabetes alone are estimated at 
$1,844 per person per year. 

In the U.S., 40% of people would not be able to pay an 
unexpected expense of $400.164 In this economic situation, 
combined with the high cost of insulin, more than one-
quarter of U.S. insulin users report rationing insulin in the 
past year, according to a 2020 survey.165 As diabetes has a 
higher prevalence in the lower income deciles,166 the poor 
carry a disproportionate share of the burden. The direct cost 
of diabetes to a patient is $800 per month.5 For insulin users, 
costs are rapidly increasing at an annual growth rate of 10%,167 
and the price of insulin tripled between 2002 and 2013.168 Three 
companies (Novo Nordisk, Sanofi, and Eli Lilly) control 99% of 
the world’s market for insulin.169 

Recent federal legislation limits the maximum price of 
medications, which include the diabetes medications Jardiance 
(Boehringer Ingelheim and Eli Lilly), Januvia (Merck), and 
Farxiga (AstraZeneca), as well as insulin injections produced by 
Novo Nordisk.170 This may be of help. But lower-cost treatment 
would be of enormous benefit.

In contrast to the above, the price of metformin has dropped 
by 93%.171 The supplements discussed above plus metformin, 
cost together around $200 per month.

Conclusion

Low-cost solutions are urgently needed for the growing, 
extremely costly problem of diabetes. There is evidence that 
the disease burden can be greatly reduced by lifestyle changes, 
including time-restricted eating of low glycemic-index natural 
foods, exercise, and sun exposure, with the addition of a few 
widely available supplements and some medications. The 
suggested protocols need further study, and funding is needed 
for holistic diabetes management in medical systems.
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